Allolib  1.0
C++ Components For Interactive Multimedia
al::SphericalHarmonic< L_MAX > Class Template Reference

Spherical harmonic evaluator using cached coefficients. More...

#include <C:/Users/Andres/source/repos/casm_viewer/external/tinc/external/allolib/include/al/math/al_Spherical.hpp>

Public Member Functions

template<class T >
Complex< T > operator() (int l, int m, const Complex< T > &ctheta, const Complex< T > &cphi) const
 Evaluate spherical harmonic. More...
 

Static Public Member Functions

template<class T >
static Complex< T > expim (int m, const Complex< T > &ctheta)
 
static double coef (int l, int m)
 Get normalization coefficient.
 
static const double & coefTab (int l, int m)
 Get normalization coefficient (tabulated)
 
static double coefCalc (int l, int m)
 Get normalization coefficient (calculated)
 

Detailed Description

template<int L_MAX = 16>
class al::SphericalHarmonic< L_MAX >

Spherical harmonic evaluator using cached coefficients.

Spherical harmonics are solutions to Laplace's differential equation on the surface of a 2-sphere. The solutions are complex functions parameterized by two integers, l and m, and two angles defining an orientation in space. The l number determines the number of nodal lines (circles with zero magnitude) and m determines the number of latitudinal nodal lines (geodesics intersecting the z axis). When |m| = l, the harmonics are "beach ball"-like (sectoral) and when m = 0, the harmonics are "target"-like (zonal). Other values of m produce a checkerboard pattern (tesseral). Th Condon-Shortley phase factor of (-1)^m is included.

Definition at line 167 of file al_Spherical.hpp.

Member Function Documentation

◆ operator()()

template<int L_MAX = 16>
template<class T >
Complex<T> al::SphericalHarmonic< L_MAX >::operator() ( int  l,
int  m,
const Complex< T > &  ctheta,
const Complex< T > &  cphi 
) const
inline

Evaluate spherical harmonic.

Parameters
[in]lnumber of nodal lines
[in]mnumber of latitudinal nodal lines, |m| <= l
[in]cthetaunit magnitude complex number describing longitudinal angle in [0, 2pi]
[in]cphiunit magnitude complex number describing latitudinal angle in [0, pi]

Definition at line 180 of file al_Spherical.hpp.


The documentation for this class was generated from the following file: